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SUMMARY

A two-dimensional baroclinic model is described for coastal upwelling in a vertical plane perpendicular to the
coast. The model consists of equations of motion, continuity and turbulence energy along with equations for
salinity and thermal energy and an equation of state. The role of density gradient in the baroclinic pressure
gradient is investigated to understand the dynamics during the upwelling process. To represent the surface and
bottom boundaries corresponding to a fixed computational level in the discretized equations, a set of non-
dimensional co-ordinates is used. These co-ordinates are then transformed onto logarithmic co-ordinate axes to
resolve effectively the boundary layers.

The first experiment is carried out with a flat bottom to understand the dynamics of the upwelling and the
structural features of the process by diagnostic analysis of the balance between various terms of the momentum
equation. Starting from a state of rest, a spatially uniform alongshore wind stress corresponding to the mean
monthly wind stress for the month of May is applied and held constant thereafter. The fluid is assumed to be
incompressible and stratified, with the initial temperature and salinity having no horizontal variations but a
uniform vertical gradient. As the upwelling phenomenon is transient in nature and keeping in mind the additional
computational overheads, the response of the model is studied day-wise up to 4 days.

In the second experiment the model is applied to study the upwelling off the east coast of India in a plane
normal to the coast of Visakhapatnam. The analysis area extends to 100 km offshore with real topography. The
results are presented day-wise for 4 days, comparing the balance between various terms in the upwelling region
and in the open sea, and the dynamics of the baroclinic coastal jet is explained.
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1. INTRODUCTION

Regions of coastal upwelling are characterized by a reduction in the sea surface temperature and high
biological activity. First available observations of the coastal upwelling along the east coast of India
from Lafong1 indicate that upwelling of subsurface layers of the sea occurs from March to May and
sinking of surface layers takes place from September to November along the central part of the coast.
Observations of Raoet al.2 reveal that upwelling is predominant off Visakhapatnam during pre-
monsoon periods and then decreases with the withdrawal of the south-west monsoon.

Early models of coastal upwelling mostly assumed the water to be homogeneous, leading to little
practical application except for providing an indication of water movements. These models, with very
few exceptions,3 are linearized. However, the non-linearities cannot generally be rejected; for
example, the horizontal temperature and salinity variation, which result in offshore advection of
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upwelled cold water in the surface layer, has a significant effect on the dynamics of the upwelling.
Also, the linear models are constrained by many assumptions to obtain the solutions, e.g. use of
simple parametrization of turbulent mixing processes (constant coefficients of eddy viscosity and
diffusivity4) unrealistic boundary conditions (fixed temperature at the surface4,5) etc. Thus the study
of the dynamics of upwelling needs a numerical model to solve the interactions involved in the
complicated non-linear problems.

O’Brien and Hulbert6 formulated a two-dimensional layered model for studying the dynamics of
the upwelling on an f-plane. The model is time-dependent and with no alongshore gradients. To
simplify matters, they have not considered the exchange of heat, momentum and mass between the
layers, which is an essential part of coastal dynamics.

Herein a two-dimensional non-linear model is described with a continuously stratified ocean to
account for the exchange of heat, momentum and mass. The model is based upon the dynamical
framework described by Johnset al.,7 consisting of the continuity equation, the equations of motion
and a turbulent energy equation to parameterize the vertical transfer of momentum and turbulence
energy. In the present study the effect of the baroclinic pressure gradient term resulting from a
horizontal density gradient is included in the horizontal momentum equation along with an equation
of state connecting the temperature and salinity. Also, the effect of a stable vertical density
stratification on the production of turbulence is taken into account by the inclusion of a vertical
density gradient term in the turbulence energy equation.

To facilitate the resolution of boundary layers, a set of non-dimensional co-ordinates analogous to
that used by Phillips8 and Freemanet al.9 is adopted such that the boundaries correspond to fixed
computational levels in the discretization of the equations. These non-dimensional co-ordinates are
then further transformed onto stretched logarithmic axes. Thus the desired resolution in the boundary
layer has been attained without introducing an excess number of computational levels.

2. FORMULATION

2.1. Governing equations

Right-handed rectangular axes are chosen, assuming that the curvature of the earth’s surface can be
neglected. The origin O is situated at the coastline and at the mean sea level. The axes Ox, Oy and Oz
point offshore, alongshore and vertically upwards respectively. The elevation of the sea surface above
its mean sea levelz � 0 is denoted byz � z�x; t� and the bottom topography byz � ÿh�x�. The
coastal boundary corresponds tox � 0 and the eastern open-sea boundary tox � Lx. Figure 1 shows
schematically the model geometry and rectangular axes.

The dynamical equations consist of the equations of motion, the equations for mass conservation,
thermal energy and salinity and the equation of state. These equations are supplemented by the
turbulence energy density equation together with Kolmogorov’s hypothesis.

The equations of motion in the directionsx; y andz respectively are of the form
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whereu; v andw are the velocity components parallel to the axesx; y andz respectively,tx andty are
the components of turbulent shear stress in the directionsx andy respectively,p is the pressure,f is
the Coriolis parameter,r0 is the reference density of the water,r is the density of the water,g is the
acceleration due to gravity andt is the time.

The shear componentstx andty are related to the velocity componentsu andv, using the gradient
transfer hypothesis, by

tx � r0KM
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; ty � r0KM
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; �4a; b�

where KM is defined as the vertical exchange coefficient for momentum and is determined by
Kolmogorov’s hypothesis.

Assuming that the fluid is incompressible, the equation of continuity is expressed as
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The temperatureT and salinityS are determined from transport equations of the form
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The equation of state, in which the temperature and salinity are related linearly to the density, is

r � r0�1 ÿ a�T ÿ T0� � d�S ÿ S0��; �8�

Figure 1. Model geometry and rectangular axes
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where a is the thermal expansion coefficient, taken as2�0 � 10ÿ4 �Cÿ1
; d is the coefficient of

expansion for salinity, taken as7�5 � 10ÿ4 pptÿ1
; andT0 andS0 are the reference temperature and

salinity respectively.
The turbulence energy densityE is determined from the equation
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where KE and KD are the exchange coefficients for turbulence energy density and density
respectively. The first term on the right-hand side of (9) represents the effect of the turbulence
production by energy extraction due to the vertical shear in the mean flow. The second term
represents the vertical diffusion ofE. The third term gives the positive or negative contribution to the
production ofE depending upon the vertical density stratification. The last term simulates dissipation
e and is parameterized as

e � c3=4E3=2
=l; �10�

where c is a constant with the value 0�08 and l is a turbulent mixing length scale chosen to be
consistent with a reduction in vertical mixing near the boundariesz � ÿh and z. Accordingly, a
modified Prandtl mixing length scale is used as

l �
k

1=l1 � 1=l2
; �11�

where

l1 � �z � h � z0b�; l2 � �zÿ z � z0s�: �12a; b�

In (11),k is Von Karman’s constant andz0s andz0b are parameters related to the roughness of the sea
surface and sea floor respectively. Thus the mixing length scalel reaches a maximum value in the
mid-depth region and decreases towards both the sea surface and the sea floor. Also, (11) reduces to
Prandtl’s length scale given by (12a) and (12b) in the regions adjacent to the sea floor and sea surface,
which results in the well-documented logarithmic velocity profile within these regions provided that
sufficient resolution is available in the numerical solution.

Following Li,10 the exchange coefficients are given by

KM � c1=4lE1=2
� N ; �13�

KD � KS � KT � KE � c1=4lE1=2
: �14�

In (13),N is an externally prescribed mixing coefficient which reduces to negligible values near both
the sea surface and the sea floor. The characteristic mid-depth value ofN is 10ÿ2 m2 sÿ1. This type of
vertical distribution is chosen to increase the vertical turbulent exchange of momentum in the mid-
depths compared with salinity, thermal and turbulent energy. Utilizing the fact that the vertical grid
spacingDz is relatively coarser in the mid-depths compared with its values near the sea floor and sea
surface, the prescribed form used forN is made proportional to the local value ofDz. Giving the
physical justification for the implementation of the procedure, Kundu11 has described how the
vertical transfer of momentum is supported by small-scale turbulence and large-scale internal gravity
waves. Transfer by the latter is dominant in regions of strong stable thermal stratification where the
shear production of small-scale turbulence is suppressed.12 Since the internal gravity waves are not
solved in this model, their effect is parametrized by the vertical mixing enhancement procedure in
regions where the turbulence energyE diminishes to negligible values. An alternative approach may
be to use the concept of stability functions.13
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2.2. Boundary conditions

At the sea surfacez � z�x; t� the boundary conditions to be satisfied are

@z

@t
� u

@z

@x
ÿ w � 0; �15a�

KM
@u

@z
�

tzx
r0

; KM
@v

@z
�

tzy

r0
; �15b; c�

@T

@z
�

@S

@z
�

@E

@z
� 0; �15d�

wheretzx andtzy are the applied surface wind stresses in the directionsx andy respectively.

At the sea floorz � ÿh�x� the boundary conditions are

u � v � 0; �16a�
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At the western boundaryx � 0 the boundary condition is

u � 0: �17�

At the eastern open-sea boundaryx � Lx a radiation condition is applied to determine the elevation of
the sea surface,

�u ÿ �g=h�1=2z � 0; �18�

where �u is the depth-averaged velocity in thex-direction, given by
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The temperature and salinity at the open-sea boundary are determined according to the direction of
the fluid flow. During outflow it is determined by the horizontal advection from the interior and
during inflow it is determined by the advection invoking the temperature and salinity just outside the
analysis region. The temperature and salinity just outside the analysis region are assumed to be
known and are taken as temporally invariant during the integration. The exact way in which the
boundary conditions are applied will be seen more clearly in Section 5.

The horizontal pressure gradient can be expressed in terms of a barotropic component arising from
the variations in the sea surface elevation and a baroclinic component which expresses the buoyancy
arising from the horizontal density gradient:
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Making use of (4), (8) and (19), equations (1), (2) and (9) can be written as
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Using the kinematical free surface boundary condition, the continuity equation is expressed as
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Hence (20)–(23) and (5)–(7) form the basic dynamical equations of the model.

3. CO-ORDINATE TRANSFORMATION

In the above rectangular Cartesian co-ordinates the sea surface and sea floor may not correspond to
fixed computational levels in the discretization of the equations, which could lead to a rather crude
representation of the boundary conditions. A transformation of the vertical co-ordinate into a non-
dimensional vertical co-ordinates is therefore introduced as

s � �z � h�=H; �24�

whereH � z� h is the total depth of the water. Thuss increases monotonically froms � 0 at the
bottomz � ÿh�x� to s � 1 at the free surfacez � z�x; t�, simplifying the application of the boundary
conditions at the fixed computational levelss � 0 and 1.

Similar to the vertical co-ordinate transformation, a new non-dimensional horizontal co-ordinatew

can be used to replacex,

w � x=Lx; �25�

so thatw � 0 and 1 correspond to the western boundary�x � 0� and eastern open-sea boundary
�x � Lx� respectively.

Taking �w; s; t� as new independent co-ordinates, equations (20), (21), (5), (23), (6), (7) and (22)
may be readily transformed into
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whereo is the ‘vertical velocity’ in new co-ordinates, defined by
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o may be obtained diagnostically, by integrating (28a) vertically using (28b) and the boundary
conditiono � 0 at s � 0, as
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The boundary conditions (15) and (16) become: (i) at the sea surfaces � 1,
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(ii) at the sea floors � 0,
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The forms of the boundary conditions at the western and eastern boundaries are unaltered. Finally,
the length scales given in (12a,b) are written as

l1 � k�z0s � �1 ÿ s�H �; l2 � k�z0b � sH�: �36a; b�
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Adding (28a) into (26), (27) and (29)–(31), a set of equations in flux form which have conservation
characteristics may be obtained as
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whereu � Hu; v � Hv;T � HT ;S � HS andE � HE.

4. FURTHER CO-ORDINATE TRANSFORMATION

Observational evidence14–16shows the existence of a logarithmic bottom boundary layer in which the
velocity increases logarithmically with the distance from the sea floor. Also, the dynamics of
upwelling is dependent on the development of an Ekman layer near the bottom. Hence it is desirable
to resolve this high-shear region adequately in the model. To achieve this, thes-co-ordinate is
transformed into a new vertical co-ordinate which leads to fine vertical spacings near the bottom
�s � 0� and surface�s � 1� in the discretization of the equation.

The new vertical co-ordinateZ is defined via
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wheres0 is a disposable parameter andZs is the value ofZ at s � 1. This enables us to represent the
boundary conditions (34b–d) and (35a–c) in such a way that ‘flux’ can be applied at half-levels,
ensuring both conservative characteristics in the numerical scheme and half-levels not far away from
the boundaries. This can be seen more explicitly in Section 5. Additionally, fine resolution is also
required in the upwelling zone, mainly within the baroclinic Rossby radius of deformation. This is
accomplished by a further co-ordinate transformation of thew-co-ordinate into a new horizontal co-
ordinatex,

x � w� y ln�1 � w=w0�; �43�
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wherey andw0 are disposable parameters.
Taking�x; Z; t� as new independent co-ordinates and also writingb�Z� � @s=@Z andF�w� � @x=@w,

equations (28b), (33) and (37)–(41) become
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The boundary conditions (34) and (35) become: (i) at the sea surfaceZ � Zs,
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(ii) at the sea floorZ � 0,
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Equations (44)–(50) together with the corresponding boundary conditions form the final version of
the equations used in the numerical model.
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To avoid numerical thermal sources and sinks in the analysis region, the integral constraint which
governs (48) can be obtained by integrating (48) over the whole analysis region to yield
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Using the boundary conditions (51a), (52c), (51d) and (52b), the third term on the left-hand side and
the term on the right-hand side become zero; (53) then reduces to
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Since atx � 0; u � 0, (48) further reduces to
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Equation (55) states that change in total thermal energy in the system results solely from the
horizontal heat flux across the eastern open-sea boundaryw � 1. The same treatment is also applied
to the salinity equation (49) to get
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5. FINITE DIFFERENCE EQUATIONS

The continuous equations are expressed in finite difference form in order to obtain the numerical
solution. The horizontal, vertical and time variablesx; Z and t are discretized as

x � xi � �i ÿ 1�Dx; i � 1; 2; . . . ;m;

Z � Zk � �k ÿ 1�DZ; k � 1; 2; . . . ; n;

t � tp � pDt; p � 0; 1; 2; . . . ;

�57�

where Dx � xm=�m ÿ 1� and DZ � Zs=�n ÿ 1� are the horizontal and vertical grid increments
respectively andDt is the time increment. The value ofxm is obtained from (43) by settingw � 1.

Computations are carried out on a horizontally staggered grid for which two distinct types of
computational points are defined. Even points marked by stars are calledz-points at whichz, o, v, S
andT are computed, while odd points marked by circles are calledu-points at whichu;E; l and
KM�KT;KS;KE� are computed, as illustrated in Figure 2a. An even value is chosen form such that the
coast consists ofu-points and the open-sea boundary consists ofz-points. This staggered grid
arrangement is similar to the type-C grid described by Arakawa and Lamb.16

An unstaggered grid is used for computations in the vertical. Figure 2b shows the finite difference
mesh of the model.

Centred differences are used for the space derivatives in (46), (47) and (50). In the temperature and
salinity equations (48) and (49), however, an upstream scheme is used for the horizontal advection
terms. Vertical diffusion terms in (46)–(50) and dissipation and suppressive terms in (50) are
evaluated by a semi-implicit scheme to guarantee unconditional computational stability with regard
to the choice of the vertical grid increment. Forward differences are used for the time stepping. In
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(43) the value ofx at each of discretew is obtained by the application of a Newton–Raphson iterative
procedure. The final form of the finite difference equations (46)–(50) yields a tridiagonal matrix and
is solved by a Gaussian elimination method.

The discrete functionF�xi; Zk; tp� is denoted byFi, i.e.

F�xi; Zk; tp� � Fp
i;k � Fi: �58�

Equation (44) is discretized as

z
p�1
i ÿ z

p
i

Dt
�

Fi

Lx

1

2Dx
� �u

p
i�1 ÿ �u

p
iÿ1� � 0 �59�

and (58) is used for whichz is computed atz-points i � 1; 2; 3; . . . ;m ÿ 2. The open-sea radiation
condition (18) is applied ati � m ÿ 1 to computez at i � m, which yields

zp�1
m � ÿz

p�1
mÿ2 � 2�up

mÿ1�hmÿ1=g�1=2
: �60�

At the coastline wherei � 1; z is determined from extrapolation. The values ofz at u-points
i � 1; 3; 5; . . . ;m ÿ 1 are then computed by averaging the adjacent updated values ofz at z-points
i � 1; 2; 4; . . . m. As a result, values ofz may be computed at all computational points
i � 1; 2; 3; . . . ;m.

The finite difference equation corresponding to (45) is
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; �61�

where Hp�1
i � z

p�1
i � hi. Equation (61) is to computeo at z-points i � 2; 4; . . . ;m ÿ 2 and

k � 2; 3; . . . ; n ÿ 1. The value ofo at k � 1 andn are zero from the boundary conditions (51a) and
(52c). The values ofo at other points are obtained by averaging or extrapolation from the adjacent
updated values ofo.

* * * *
Coast Open sea∆x

u ζ u u uζ ζ ζ
i = 1 2 3 4 5 m −2 m −1 m

Figure 2a. Staggered grid arrangement in horizontal co-ordinate

* * * *

* * * *

* * * *

* * * *

‘flux’
k =n

k =n−1

k =1

k =2

Figure 2b. Finite difference mesh used in model
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The discretization of (46) may be written as
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Rearrangement of (62) gives

a1;ku
p�1
i;k�1 � a2;ku

p�1
i;k � a3;ku

p�1
i;kÿ1 � a4;k; �63�

whereaj;k� j � 1; 2; 3; 4� are known values.
The boundary condition (51b) is discretized as
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Hence
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The boundary condition (52a) is discretized as

up�1
i;1 � 0: �66�

Equation (63) together with (65) and (66) is solved by a Gaussian elimination method for computing
the values ofu atu-pointsi � 3; 5; . . . ;m ÿ 1 andk � 1; 2; . . . ; n. As mentioned in Section 4, the use
of vertical diffusive flux conditions at half-levels leads to the conservation characteristics in the
numerical scheme and also accommodates the fact that the vertical grid spacings are very fine near
the surface and the bottom. The values ofu atu-pointsi � 3; 5; . . . m ÿ 1 andk � 1; 2; . . . ; n are then
computed as

up�1
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u
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z
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: �67�
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Discretizing they-momentum equation (47) gives
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where the Coriolis force term is evaluated by using the updated values ofu to avoid computational
instability. The discretization of the boundary conditions (51c) and (52a) is given by
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The values ofv at i � 2; 4; . . . ;m ÿ 2 and k � 1; 2; . . . ; n can be computed from (68), (69a) and
(69b) in a similar way as explained for the computation ofu. The values ofv at z-points
i � 2; 4; . . . ;m ÿ 2 andk � 1; 2; . . . ; n are given by
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Discretizing the turbulence energy equation (50) results in
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The discretization of the boundary conditions may be written as

E
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p�1
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*
i = m m + 1

T u

Figure 3a. Horizontal thermal advection at the boundaryi � m whenu > 0

*
i = m m + 1

T u
*

m + 2

T

Figure 3b. Horizontal thermal advection at boundaryi � m whenu < 0
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From equation (70) the values ofE and E may be obtained atu-points i � 3; 4; . . . ;m ÿ 1 and
k � 1; 2; . . . ; n by a method analogous to that of computingu andv.

Equations (36a) and (36b) are discretized as
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Equations (13) and (14) are discretized as
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The values of l;KT;KS �KE� and KM at u-points i � 3; 5; . . . ;m ÿ 1 and k � 1; 2; . . . ; n are
computed using (72)–(74).

The finite difference form of (48) is
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The boundary conditions (51d) and (52b) are discretized as
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Equation (75) together with (76) is solved by a Gaussian elimination method to obtain the values ofT

andT at z-points i � 2; 4; . . . ;m ÿ 2 andk � 1; 2; . . . ; n.
The discretized form of the salinity equation (49) is
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The boundary conditions (51d) and (52b) are discretized as

S
p�1
i;n � S

p�1
i;nÿ1; S

p�1
i;2 � S

p�1
i;1 : �78a; b�

Equation (77) together with (78) is again solved by a Gaussian elimination method to obtain the
values ofS andS at z-points i � 2; 4; . . . ;m ÿ 2 andk � 1; 2; . . . ; n.

Figure 4a. Initial temperature field

Figure 4b. Initial salinity field
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In (62), (68) and (70) the discretization of the horizontal advection term is neglected near the open-
sea boundary�i � m ÿ 2 or m ÿ 1�. However, in (75) the horizontal temperature advection term is
obtained at the open-sea boundary�i � m� and discretized as

Fm

Lx

1
4Dx

��u
p
m�1;k ÿ ju

p
m�1;k j�T

p
m�2;k � �u

p
m�1;k � ju

p
m�1;k j ÿ u

p
mÿ1;k � ju

p
mÿ1;k j�T

p
m;k

ÿ �u
p
mÿ1;k � ju

p
mÿ1;k j�T

p
mÿ2;k �; �79�

whereup
m�1;k is obtained by extrapolation andTP

m�2;k is the temperature just outside the open-sea
boundary, which is prescribed as temporally invariant. It will be seen that the discretization scheme
used in the temperature (48) is consistent with the integral constraint given by equation (55).

The summation of (79) along the horizontal fromi � 2 to m gives
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where the number 2 in parentheses over the summation indicates that the summation overi is carried
out with a step of two. The term in the second square brackets in (80) becomes zero owing to the
coastal boundary conditionup

1;k � 0. Equation (80) is then simplified as
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The summation of (75) along the vertical fromk � 2 to n ÿ 1 yields
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Using (76), the right-hand side of (82) becomes zero. Mathematically,
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The summation of (75) along the vertical fromk � 2 to n ÿ 1 yields
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Therefore the summation of (75) in both the vertical fromk � 2 to n ÿ 1 and the horizontal from
i � 2 to m gives

P

n

k�2

P
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T
p�1
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m�1;k j�T

p
m�2;k � �u

p
m�1;k � ju

p
m�1;k j�T

p
m;k �DZ � 0:

�85�

Equation (85) shows that the discretization scheme used in the temperature equation (48) agrees with
the integral constraint given by (55). At the same time the horizontal thermal advection at the open
boundary is correctly presented.

During outflow, whereup
m�1;k is positive, (85) becomes

P

n

k�2

P

m�2�

i�2

T
p�1
i;k ÿ T

p
i;k

Dt
DZDx�

P

n

k�2
u

p
m�1;kTp

m;kDZ � 0; �86�

so that the horizontal thermal advection at the boundary is calculated by reference to the value of the
temperature at the boundaryi � m, as illustrated in Figure 3a.

During inflow, whereup
m�1;k is negative, (83) reduces to

P

n

k�2

P

m�2�

i�2

T
p�1
i;k ÿ T

p
i;k

Dt
DZDx�

P

n

k�2
u

p
m�1;kTp

m�2;kDZ � 0; �87�

therefore the horizontal thermal advection at the boundary is determined by the temperature just
outside the boundary�i � m � 2�, as illustrated in Figure 3b.

A similar discussion holds good for (77) for the horizontal salinity advection at the open-sea
boundaryi � m.

6. NUMERICAL EXPERIMENTS

6.1. Introduction

Experiments are described to investigate the effect of bottom topography on the upwelling and the
effect of pure wind stress forcing. To accomplish the latter, a mean monthly wind stress is derived
from the wind obtained from theClimate Atlas of the Indian Ocean17 for the month of May in which
the upwelling is predominant along the east coast of India. The wind stress derived from the wind is
used to drive the model, with which two experiments are performed to understand the dynamics of
the upwelling as well as the effect of topography on the upwelling.

The values of several parameters used in the numerical experiments remain unchanged; these
parameters and their values are listed in Table I. The grid spacing is uniform in the stretched co-
ordinate system but varies non-uniformly in the Cartesian co-ordinates to give fine resolution near the
sea floor and the coast. Thus along thex-direction the first grid point is about 1�7 km from the
coastline and the grid spacing increases to about 6 km near the open-sea boundary. In the vertical
direction 36 levels have been chosen, with resolution about 10 m in the deep region and of the order
of 1 cm at the sea bed. In the more shallow coastal upwelling regions (Experiment 2) the resolution at
the sea bed is of the order of only 0�2 cm because of the local depth. A time increment of 90 s is
found to give computational stability on the basis of CFL criteria and is used in these experiments.
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6.2. Experiment 1. Flat bottom case

This experiment is carried out with a constant water depth of 115 m. The fluid is assumed to be
initially at rest. A spatially uniform alongshore wind stressty � 0�03 N mÿ2, which corresponds to a
northerly wind with a speed of 5 ms71 at 10 m above the sea surface, is imposed at timet � 0 and
held constant for the entire duration of the integration. The initial temperature and salinity
distributions have no horizontal variations but only a uniform vertical gradient (Figure 4). The
temperature just outside the open-sea boundary is considered as equal to the temperature at the open-
sea boundary�Tm�2;k � Tm;k� and is assumed to be temporally invariant during the integration. In a
similar fashion the salinity at the open-sea boundary is taken�Sm�2;k � Sm;k�.

6.2.1. Circulation and thermal structure.Figure 5a shows the thermal structure at timet � 10 h.
The contours are drawn at an interval ofDT � 1 �C. As observed, there is no significant effect of
surface wind stress on the thermal structure. The 26�C isotherm is horizontal without any unwarping.
Figure 5b shows the effect of impulsive application of alongshore wind stress in generating an
offshore flow near the surface and with a thickness of nearly 55 km. In the bottom layers a
compensating onshore flow exists to satisfy the law of conservation of mass. As an initial response to
the wind stress forcing, the offshore flow is substantial, 4�3 cm s71, with an onshore flow of
3 cm s71. Figure 5c shows the alongshore velocity, which is in the same direction as the applied
wind stresstzy at all depths. The value ofv increases from the bottom to the surface from 1 to
13 cm s71. There is a very narrow coastal jet near the surface, which corresponds to a weak
horizontal temperature gradient (Figure 5a). The vertical velocity plotted in Figure 5d shows
upwelling appearing near the coast, with a maximum of 0�66 1073 cm s71 appearing at a depth of
55 m.

The circulation and thermal structure att � 24 h are shown in Figure 6. The results indicate that
the upwelling process has started and the characteristics are slowly unfolding, but the response is still
at an early stage. From Figure 6b we can see that there is a strong vertical shear in the surface layers
and the bottom Ekman layer is also developed. The maximum onshore flow is 3�8 cm s71, which
occurs at 110 m depth. The onshore velocity decreases uniformly to 55 m depth, after which the
offshore velocity starts increasing towards the surface. Examination of Figure 6d shows that the
upwelling takes place within 40 km of the coast, which is equivalent to the baroclinic radius of
deformation,Nh=f , where N is the Brunt–Va¨säla frequency. The maximum vertical velocity is
4�96 1073 cm s71 at 55 m depth and is found to be increased in magnitude compared with the 10 h
result. The thermal structure in Figure 6a shows an upward tilt of the isotherms near the coast,
whereas the isotherms are horizontal away from the coast. This upwarping near the coast indicates
that cold water from the bottom is moving upwards owing to upwelling. The thermal advection and

Table I. Fixed parameters of numerical calculation

Parameter Value Description

Lx 100 km Horizontal length
m 20 Number of horizontal grid points
n 36 Number of vertical grid points
Zob 0�01 m Bottom roughness
Z0S 10�0 m Surface roughness
g 0�8 Disposable parameter
s0 0�0001 Disposable parameter
y 0�04 Disposable parameter
w0 0�004 Disposable parameter
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diffusion processes as per the temperature equation (6) lead to the intersection of the 27�C isotherm
with the surface near the coast. The surface mixed layer depth is found to be 15 m. The strong
onshore flow near the bottom results in a bottom mixed layer depth of 10 m. Figure 6c reveals that
although the alongshore flow is in the direction oftzy at all depths, its magnitude near the coast is very
different from that in the seaward region at the same level. The narrow baroclinic coastal jet has
developed near the surface with a maximum velocity of 19 cm s71. However, in the seaward region
the maximum alongshire velocity is only 16 cm s71 and also there is no horizontal shear as a
consequence of the spatial uniformity of the wind stress and the absence of the horizontal thermal
gradient.

The development of the baroclinic coastal jet can be interpreted as follows. The upward tilt of the
isotherms near the coast implies that the baroclinic pressure gradient points offshore and increases in
magnitude with depth. Alternatively, we can say that it is actually in the opposite direction to the
gradient of the sea surface elevation. Thus, the onshore–offshore velocity is reduced near the coast
compared with that in the seaward region where the horizontal temperature gradient is absent. The
reduction in the onshore–offshore velocity (increase in Coriolis force in they-momentum equation) in
turn requires an increased alongshore flow near the surface (the baroclinic coastal jet). The
development of the coastal jet is therefore associated with the evolution of the horizontal temperature
gradient in the region.

Examination of Figure 7, which gives the flow fields and thermal structure att � 48 h, indicates
further intensification of the upwelling. From Figure 7b it is found that the maximum offshore
velocity is 5�5 cm s71; at the same time the onshore velocity is also strengthened to 4�5 cm s71. The
surface layer of offshore velocity is about 60 m and also the strength of the new onshore flow
decreases more rapidly above the bottom layers as required by mass conservation. A closer
examination shows that the bottom mixed layer has increased slightly to 20 m in depth. Figure 7d
shows that the upwelling is now extended to 50 km offshore and the maximum lies at about 60 m
depth with a value of 4�756 1073 cm s71. It seems that as time progresses, the vertical position of
maximum vertical velocity is occurring at greater depths, which in fact coincides with the location of
zero offshore flow. Figure 7a gives the thermal structure, which reveals that near the shore the
isotherms have greater upward tilts. This is consistent with the fact that there is rising cold water in
this zone, as is evident from Figure 7d. The isotherms are horizontal in the seaward region but slowly
show an upward tilt, finally resulting in intersection with the free surface near the coast. There is no
indication of frontal zone formation as reported by Li10 in his simulations. The surface layer has
increased to 15 m in depth and a bottom mixed layer of the same size is formed. Figure 7c shows the
alongshore velocity structure with a broader and deeper structured baroclinic coastal jet and
strengthened to a maximum value of 27 cm s71.

Figure 8 gives the circulation and thermal structure of the upwelling att � 72 h. It can be seen
from Figure 8b that the offshore flow takes place from the surface to a depth of 60 m with a
maximum value of 5�8 cm s71. The maximum onshore velocity has a value of 5�2 cm s71. The
strong vertical shear near the bottom indicates that the bottom Ekman layer is now well-established.
From Figure 8d we can note that the upwelling extends to a greater distance from the coast, about
55 km. The maximum vertical velocity occurs at 65 m depth with a value of 4�56 1073 cm s71.
The alongshore velocity field (Figure 8c) shows that the baroclinic coastal jet continues to intensify in
strength and acquires a maximum value of 32�7 cm s71. From the thermal structure (Figure 8a) it can
be seen that the 27�C isotherm has migrated further offshore to a distance of 45 km. The horizontal
temperature gradient has increased, indicating greater upwarping of the isotherms near the coast. As
the cold upwelled water near the surface migrates offshore, the maximum of non-linearities resulting
from the horizontal thermal advection is therefore evident. The surface mixed layer has a depth of
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15 m and the depth of the bottom layer near the coast is greater than that in the seaward region, which
results from the onshore and vertical advection in the bottom mixed layer and in the water column
near the coast.

At t � 96 h the thermal and flow field structures are as given in Figure 9. The onshore–offshore
velocity structure in Figure 9b shows no significant changes in comparison with that att � 72 h. The
vertical velocity structure (Figure 9d) shows some weakening and the maximum value occurs at 65 m
depth with a magnitude of 4�061073 cm s71. The offshore extension of the vertical velocity field
increases to 60 km compared with that att � 72 h. The onshore flow, which compensates the upper
offshore flow by the requirement of mass conservation, is largely concentrated within the fully
developed bottom Ekman layer. The alongshore flow (Figure 9c) shows that the baroclinic coastal jet
has increased in strength to 35 cm s71 with a strong vertical shear. The thermal structure in Figure 9a
shows that the 27�C isotherm has further migrated offshore to a distance of 65 km. The bottom
mixed layer has deepened further, having a thickness of about 20 m, which is more prominently seen
here.

The offshore advection in the upper layers leads to a reduction in the thermal content in the
analysis area. It is obvious that this cannot be compensated by the onshore thermal advection in the
lower layers across the open-sea boundary. As there are no additional dynamical and
thermodynamical processes, such as solar radiational heating at the surface, the system cannot be
restored to its initial state. As a result, the integration cannot be carried out for a longer time.

6.2.2. Balance analysis.A diagnostic analysis of the various terms in the momentum equations is
carried out to investigate the structural features of the upwelling. The various terms in thex-
momentum equation (46) are identified as follows:
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It is known that the advection term 2 is negligible as its magnitude is generally at least two orders
smaller than that of the other terms. Figures 10a and 10b give the vertical distribution of the
individual terms in (88) at 10 h; the tendency term 1, the Coriolis term 3, the barotropic pressure
gradient term 4, the baroclinic pressure gradient term 5 and the vertical diffusion term 6 atx � 15 and
90 km are shown. The region adjacent tox � 15 km is considered as representation of the upwelling
zone, while the region adjacent tox � 90 km is taken as representative of the seaward region.

In the upwelling region (Figure 10a) the vertical diffusion term 6 is only a fraction of the other
terms. The balance is effectively achieved between the Coriolis term 3 and the pressure gradient
terms 4 and 5. Thus a quasi-geostrophic equilibrium exists in this region. Near the bottom and surface
the vertical diffusion term also contributes to the balance. The baroclinic pressure gradient term 5
points offshore and its magnitude increases with depth. The barotropic pressure gradient term 4, on
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the other hand, points onshore, with a constant value in the whole water column. Near the surface,
where the baroclinic pressure gradient term reduces to zero, an increase in the magnitude of the
Coriolis force necessitates a baroclinic coastal jet to maintain the balance of the individual terms in
the equation. This shows that the development of the baroclinic coastal jet must be associated with
the evolution of the baroclinic pressure gradient term in this region.

In the seaward region (Figure 10b) the vertical diffusion term 6 could be more significant
compared with that of the upwelling region. It may play an important role in the balance of the
individual terms of the equation, especially in the regions near the surface and bottom. The
magnitude of the barotropic pressure gradient terms has decreased in this region, leading to an
increase in the magnitude of the tendency term. Also, the baroclinic pressure gradient term 5 is
absent, which is in accordance with the absence of the horizontal pressure gradient in the seaward
region. As a result, the balance is mainly between the Coriolis force term (3) and the barotropic
pressure gradient term 4.

The y-momentum equation (47) may be written similarly to (88) as
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The balance relation in (89) is entirely different from that of (88). Figure 10c reveals the
distribution of the individual terms in the upwelling region. By observation it is found that the
advection terms are very small. The tendency term 1, resulting from the imbalance of the vertical
diffusion term 4 and the Coriolis force term 3, is positive, with a magnitude greater than that in thex-
momentum equation. It is also seen that the maximum value of the tendency term has a comparable
order of magnitude with the large vertical diffusion term. The large vertical diffusion term results in
the rapid intensification of the baroclinic coastal jet.

Figure 10d shows the magnitude of the various terms plotted for the seaward region. Again the
advection terms are found to be negligible compared with the other terms 1, 3 and 4. Thus the main
balance is between the Coriolis term and the vertical diffusion term. The tendency term is smaller in
magnitude compared with that of the upwelling region. Also, it indicates that near the surface the
increase in the value of the alongshore velocity is not as large as that of the upwelling region. The fact
that the tendency term is positive shows that there is an increase in the alongshore velocity as seen in
Section 6.2.1.

Figures 11–14 shows the vertical distribution of the individual terms of thex-momentum equation
at 24, 48, 72 and 96 h respectively in the upwelling region (a) and seaward region (b). The balance is
achieved in a similar manner to that at 10 h. There exists a balance between the Coriolis force term 3
and the pressure gradient term 4 and 5. The magnitude of the terms 3, 4 and 5 increases as the
integration time increases from 24 to 96 h. The baroclinic term has its magnitude of
3�56 1074 m2 s72 at t � 10 h increased to 2�261073 m2 s72, which indicates the intensification
of the upwarping of the isotherms near the coast. At the seaward end the main balance is between the
Coriolis term and the barotropic pressure gradient term. The vertical diffusion term makes its
presence felt by contributing to the balance near the bottom end surface. The baroclinic pressure
gradient term is insignificant in magnitude.

For the y-momentum equation the balance is shown in Figures 11–14 at 24, 48, 72 and 96 h
respectively. In the upwelling region (c) the magnitude of the individual terms is decreasing. In
Figure 12c we can see that the magnitude of the tendency term becomes very small, indicating that
the strength of the coastal jet has reached its optimum value in accordance with the balance between
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the various terms. In the seaward region (d) the advection term goes to a very insignificant value,
whereas the tendency term becomes very small. The balance, as is seen at 10 h, is between the
Coriolis term and the vertical diffusion terms.

Summarizing, the dynamical balance of the individual terms along the depth can be described as
follows.

In the x-momentum equation the balance in the upwelling region is mainly between the Coriolis
term and the pressure gradient terms during the entire integration period. Mathematically,

f v � ÿ

gHF

Lx

@z

@x
� gHa

� �1

s

Fb

Lx

@T

@x
dZÿ

F

Lx

�

@z

@x
Ts�1 �

�

@h

@x
ÿ s

@H

@x

�

T

��

ÿ gHd

� �1

s

Fb

Lx

@S

@x
dZÿ

F

Lx

�

@z

@x
Ss�1 �

�

@h

@x
ÿ s

@H

@x

�

S

��

: �90�

Thus a quasi-geostrophic equilibrium exists. Accordingly, the development of the pressure gradient
leads to the intensification of the baroclinic coastal jet fromt � 10 to 96 h. In the seaward region
�x � 90 km) the main balance is between the Coriolis force and the barotropic pressure gradient.
Also, near the surface and bottom there is a significant contribution from the vertical diffusion term.
Mathematically,
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As there is no horizontal temperature gradient, which results in the absence of the baroclinic pressure
gradient term, the alongshore velocity is smaller and its rate of increase is also small compared with
that of the upwelling region.

In they-momentum equation it seem that no simple balance relation exists in the upwelling region.
In the seaward region the advection term is negligible throughout the integration period. Fromt � 10
to 96 h the balance is between the Coriolis term and the vertical diffusion term. Thus
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6.3. Experiment 2. Variable depth case

In this experiment a variable depth is incorporated into the model to examine the behaviour of the
model with respect to a particular location in the field. The model is applied to the east coast of India
at a plane perpendicular to the coast of Visakhapatnam. The depth contours off Visakhapatnam are
used as the topography data for the model. Thush�x� is about 115 m at 55 km off Visakhapatnam and
beyond but reduces to zero at the coast. No external alongshore pressure gradient is applied; thus the
accelerations produced by the surface wind stress are higher than those of the observation.

6.3.1. Circulation and thermal structures.Figure 15 gives the circulation and thermal structure at
t � 10 h. Figure 15a shows an offshore thermal advection and outcropping of the 27�C contour at
the surface at an offshore distance of 40 km. Upwarping of the isotherms can be seen up to 30 m.
Near the coast the 26, 25, 24 and 23�C isotherms are showing upwarping. Both a surface mixed layer
and a bottom mixed layer are formed as a result of vertical turbulent mixing. The formation of the
bottom mixed layer together with the topographic variation leads to the intersection of the 14�C
isotherm with the bottom topography. Figure 15b shows that an offshore flow takes place in the
surface layer and an onshore flow takes place in the bottom layer, as in Experiment 1. The offshore
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flow is found to be stronger near the coast owing to the shallowness of the water, having a maximum
velocity of 3�0 cm s71. The formation of a weak bottom Ekman layer is observed with a very small
vertical shear. The alongshore velocity given in Figure 15c shows that the baroclinic coastal jet has
shifted farther offshore, with a maximum of 13 cm s71 occurring at an offshore distance of 60 km.
The jet, compared with that in Experiment 1, is broader and has a very small vertical shear associated
with it.

Examination of Figure 16 indicates that the upwelling is strengthened att � 24 h. Figure 16a,
which gives the thermal structure, shows that the 27�C isotherm outcrops at the surface farther
offshore at 45 km. The upwarping of the isotherms has extended to a depth of 60 m. At the bottom
the development of the Ekman layer has led to the formation of a bottom mixed layer with a depth of
10 m. The surface mixed layer is found to be of 15 m depth. Figure 16b shows the intensification of
the onshore velocity in the bottom layers, with a maximum of 3�5 cm s71, increasing the shear in the
bottom Ekman layer. The onshore velocity core near the coast has disappeared and it is thus found to
be only an instantaneous feature due to a transient phase resulting from inertial application of the
wind stress. A significant change in the onshore flow has occurred in the offshore region, where a
bottom Ekman layer has developed during this period. This shows that the bottom topography
induces two different time scales for the development of Ekman layers in nearshore and offshore
regions. The alongshore velocity structure given in Figure 16c shows further intensification of the
baroclinic coastal jet and correspondingly the vertical shear. It is found that the coastal jet has a
maximum velocity of 17 cm s71. The position of the core has moved offshore consistent with the
offshore thermal advection. The important feature in the vertical velocity structure of Figure 16d is
the appearance of two upwelling centres. These upwelling centres are located around depths of 12
and 30 m respectively. The appearance of the two upwelling centres is in agreement with the results
of Li.10 The shallowness of the water near the coast results in a narrower width of the coastal
upwelling, which is in accordance with the fact that the baroclinic radius of deformation is directly
proportional to the depth. The vertical velocity is strengthened and has a maximum of
4�56 1073 cm s71 centred near the coast at a depth of 15 m. The other two upwelling centres
are also strengthened in comparison with the 10 h result. The upwelling has spread to an offshore
distance of 50 km, with the strong velocities being confined to the bottom topography and within
20 km from the coast and up to a depth of 60 m.

The circulation and thermal structure att � 48 h are shown in Figure 17. The onshore–offshore
structure given in Figure 17b reveals that the bottom Ekman layer is fully developed and the onshore
velocity has reached a maximum of 4�9 cm s71. The offshore velocity has a maximum of
5�5 cm s71 at a depth of 55 m on the seaward side. Near the coast, offshore velocities appear up to a
depth of 12 m. Observation of Figure 17c reveals that the alongshore velocity has been further
strengthened and has a maximum of 23�6 cm s71 centred at an offshore distance of 15 km. The
vertical shear in the alongshore velocity is high near the surface layers and decreases towards the
mid-depths. The temperature structure given in Figure 17a reveals that a mixed layer of 15 m depth
with the 27�C isotherm has migrated further offshore to a distance of 60 km. The upwarping
isotherms shows up to a depth of 70 m and the 17�C isotherm also shows the upward tilt near
the coast. The vertical velocity has decreased in strength during the integration period between
t � 24 and 48 h, as observed from Figure 17d. The maximum occurs at the same depth as at
t � 24 h but having a magnitude of 4�76 1073 cm s71. The upwelling has spread to a distance of
60 km.

Figure 18 gives the flow and thermal structure att � 72 h. The offshore thermal advection as seen
in Figure 18a has pushed the 27�C isotherm to 80 km offshore. The development of the bottom
Ekman layer has resulted in intersection of the 14 and 15�C isotherms with the bottom topography.
The surface layer has now deepened and has a depth of 20 m. Intensification of the upwelling can be

54 A. D. RAO AND S. CHAMARTHI



F
ig

ur
e

20
.

V
er

tic
al

di
st

rib
ut

io
n

at
10

h
an

d
15

km
of

fs
ho

re
of

te
rm

s
in

(a
)

x-
m

om
en

tu
m

eq
ua

tio
n

an
d

(b
)y-
m

om
en

tu
m

eq
ua

tio
n

F
ig

ur
e

21
.

A
s

F
ig

ur
e

20
bu

t
at

24
h

MULTI-LEVEL NUMERICAL MODEL OF COASTAL UPWELLING 55



seen in terms of upwarping of the isotherms near the coast. The onshore–offshore flow structure given
in Figure 18b reveals the strengthening of the onshore flow with a fully developed Ekman layer. The
strength of the offshore flow is 5�4 cm s71, which is slightly higher than that att � 48 h, whereas the
onshore flow at the bottom has increased to 5�16 1073 cm s71. The baroclinic coastal jet has a
magnitude of 27 cm s71 located 55 km offshore, compared with 23 cm s71 at t � 48 hours. The
vertical velocity is 561073 cm s71 in magnitude and only two centres of maxima appear as in
Figure 18d. Even though the position of maximum vertical velocity appears at the same location, the
upwelling has spread over an offshore distance of 70 km, the farthest being at the mid-levels (about
55 m depth), which coincides with the zero offshore velocity.

The circulation and thermal structure given in Figure 19 corresponds tot � 96 h. The temperature
structure in Figure 19a shows that a small warm water region has formed near the coast, as the 26�C
isotherm intersects the free surface at 35 km offshore. The 27�C isotherm is barely seen in the
analysis area as it is moved out owing to both advection and diffusion processes. The onshore and
offshore velocities (Figure 19b) are reduced in magnitude. The coastal jet in the alongshore velocity
(Figure 19c) has a magnitude of 30 cm s71 and the vertical shear extends to a depth of 55 m. The
vertical velocity structure revealed in Figure 19d shows further weakening and the maximum of
6�256 1073 cm s71 occurs at a depth of 55 m and an offshore distance of 20 km. The intense part
of the upwelling falls within an offshore distance of 30 km, which is nearly the baroclinic radius of
deformation.

6.3.2. Balance analysis.A momentum balance analysis is performed on thex- andy-momentum
equations along similar lines to that described in Section 6.2.2. As the far offshore point�x � 90 km)
has a depth of 115 m, similar to that in Section 6.2.2, the momentum balance is observed to be the
same. Thus the discussion here is restricted to the upwelling region, which is taken to be
representative atx � 15 km. The terms are numbered as in Section 6.2.2.

Figure 20a gives the balance relation between the various terms in thex-momentum equation at
t � 10 h. The advection term is negligible as it is two orders lower in magnitude compared with the
other terms. It can be seen that the vertical diffusion term is very small except in the regions near the
surface and bottom. Leaving apart the redions of frictional dissipation, the balance is mainly between
the Coriolis term 3 and the pressure gradient terms 4 and 5. The difference between Figures 20a and
the corresponding 10 h result in Section 6.2.2 is that the baroclinic part of the pressure gradient term,
although pointing offshore, is reduced in the depth region of 30 m. The terms overall have a smaller
magnitude compared with that of Section 6.2.2. In they-momentum equation (Figure 20b) the
vertical distribution of terms shows that the vertical diffusion term 4 has a large magnitude at the
surface. The momentum term magnitude is significant compared with that in they-momentum
equation of Section 6.2.2. The Coriolis term points onshore near the surface but changes to offshore
as the depth increases. The tendency term is large near the surface but gradually reduces to zero at the
bottom. The lack of balance between the Coriolis and vertical diffusion terms results in a large
magnitude of the tendency term, which indicates a strong baroclinic coastal jet. As the upwelling is in
the development phase, the balance is well-established, as is evident from Figure 20.

Figure 21 gives the balance relation between the various terms att � 24 h. In thex-momentum
equation (Figure 21a) the balance is maintained as att � 10 h. The magnitude of the terms is
increased compared with that att � 10 h. The baroclinic pressure gradient term points offshore and
its magnitude increases with depth, reaching a maximum value of 11061075 m2 s72 at a depth of
45 m. The balance is well-established, leading to a weakening of the tendency term, which has a
small value near the surface and becomes insignificant at the bottom. The vertical diffusion term is
only a fraction of the other terms, contributing to the balance only at the surface and bottom. In they-
momentum equation (Figure 21b) the vertical distribution of the terms show that the Coriolis and
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advection terms are much smaller compared with the result att � 10 h. The tendency term, which
results mainly from the imbalance of the vertical diffusion term 4 and the Coriolis term 3, is positive,
with a maximum value near the surface. The magnitude of the vertical diffusion term is large at the
surface, pointing offshore, but rapidly decreases to point onshore at 5 m depth. It turns again to point
offshore before reducing to an insignificant value at 11 m depth.

Figures 22a–24a show the vertical distribution of the terms of thex-momentum equation at 48, 72
and 96 h respectively. The magnitude of the terms increases with increasing integration time. The
vertical diffusion term rapidly increases in magnitude near the bottom, contributing to the momentum
balance below 31 m depth att � 96 h. It is observed that the maximum value of the baroclinic
pressure gradient term also occurs at higher depths, successively from 24 to 31 m from the
integration timet � 48 to 96 h respectively. As the balance is established, the tendency term is
reduced in magnitude and becomes insignificant att � 96 h.
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